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A high-order accurate method for two-dimensional
incompressible viscous flows
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SUMMARY

A high-order accurate solution method for complex geometries is developed for two-dimensional flows
using the stream function–vorticity formulation. High-order accurate spectrally optimized compact schemes
along with appropriate boundary schemes are used for spatial discretization while a two-level backward
Euler implicit scheme is used for the time integration. The linear system of equations for stream function
and vorticity are solved by an inner iteration while contravariant velocities constitute outer iterations. The
effect of curvilinear grids on the solution accuracy is studied. The method is used to compute Cartesian and
inclined driven cavity, flow in a triangular cavity and viscous flow in constricted channel. Benchmark-like
accuracy is obtained in all the problems with fewer grid points compared to reported studies. Copyright
q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Higher order solutions of Navier–Stokes equations [1–7] become essential not just for direct
numerical simulation of turbulent flows but also for laminar flows in complex geometries. Accuracy
and resolution are the two critical issues that determine the quality of the solutions. The spectral
resolution of a scheme becomes particularly important at high Reynolds numbers.

Spectral and pseudo-spectral methods give highly accurate solutions of Navier–Stokes equations
by adequately resolving the range of spatial scales typical of high Reynolds number flows. However,
they are computationally intensive and are difficult to apply to complex geometries. In finite
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difference methods, explicit schemes [8–11] achieve high-order accuracy at the expense of using
a large stencil while compact schemes [12–16] use smaller stencils. Compact schemes can be
designed to give optimum resolution along with required numerical stability.

Finite difference methods can easily be adopted to complex geometries. In order to solve the
governing equations in curvilinear geometries, body-fitted grids are generated suitably and the
equations are transformed to a rectangular geometry where they are solved. In the present work,
we have used high-order compact schemes whose use till now has been largely limited to specific
applications like aeroacoutics and problems with wave propagation.

In 2-D incompressible flows, the �–� formulation is popular for its robustness and ease of
implementation. This method bypasses a few difficulties such as velocity–pressure coupling and
prescription of the pressure boundary conditions of the primitive approach [17, 18] and of solving
an over determined system of equations of the velocity–vorticity method [19]. In the present
paper we have attempted high-order solution of two-dimensional flows using the vorticity–stream
function method. The method of solution is through false-transient time stepping. Thus, although
only steady-state solutions have been obtained in this paper the method can be straightforwardly
extended to unsteady problems.

The organization of the paper is the following. We start with the governing equations, the
boundary conditions and their transformation. In the next section, the numerical methods adopted
are described along with the solution algorithm. In Section 4, results of four benchmark problems
involving rectangular as well as curvilinear geometries are presented. Finally we conclude the
main findings of the work in Section 5.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The set of governing equations for the vorticity–stream function formulation includes a convection–
diffusion equation for vorticity and a Poisson equation for the stream function. They are written
in transformed curvilinear coordinates as

�t + 1

J
[(U�)� + (V�)�]= 1

Re
∇2� (1)

∇2�=−� (2)

u= 1

J
(−x��� + x���), v= 1

J
(−y��� + y���) (3)

where U = y�u − x�v and V =−y�u + x�v are the contravariant velocity components in �
and � directions, respectively. The Laplacian of a generic scalar � in the transformed plane is
given by

∇2�= 1

J 2
(���� + ���� + ����)+

1

J 3
[(−y�A + x�B)�� + (y�A − x�B)��] (4)

where �= x2� + y2� , �= x2� + y2� , �=−2(x�x� + y�y�), A= �x�� + �x�� + �x�� and B= �y�� +
�y�� + �y��.
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2.1. Boundary conditions

The boundary conditions in the �–� formulation can be prescribed primarily in two ways.

Approach 1
On the solid wall, due to no-slip conditions, the stream function takes the following conditions:

�= constant and
��

�n
= 0 (5)

where n denotes the normal direction to the solid wall. The constant stream function condition is
applied to solve the Poisson equation for � while gradient condition is used along with Equation (2)
to derive the condition for vorticity at the boundaries. This approach of prescribing vorticity is
popular and well suited for reasonably simple geometries but has difficulties for the curvilinear
geometries [20].
Approach 2
In the second approach, the stream function values at the boundaries are prescribed by a constant
while vorticity is specified by its definition

�b=
[
1

J
(u�x� − u�x� + v�y� − v�y�)

]
b

(6)

Although both approaches use the zero normal derivative condition (Equation (5)) for �, their
implementation is somewhat different. The first approach leads to coupling of vorticity at the
boundaries with the stream function at the inner points in each time step, while in the second
approach the boundary vorticity remains decoupled from the inner point values at that particular
time and only admits ‘explicit update’, in terms of previous time-level values. It has been found
that the explicit update of the boundary vorticities in some cases enhances the numerical stability.
An excellent review on vorticity boundary conditions has been given by Quartapelle et al. [20].
In the present work, Approach 2 has been used with higher order schemes to specify the vorticity
boundary condition.

3. NUMERICAL DETAILS

In this section the numerical techniques adopted to solve the governing equations are discussed.
Higher order spatial discretization of different terms are explained, and then the time integration
scheme is described. Boundary conditions and the solution algorithm are also described.

3.1. Spatial discretization

Compact schemes are formed by using formulas that couple both the derivatives as well as the
functional values at a point. They use a smaller stencil than explicit schemes to achieve high-order
accuracy. Moreover, more number of coefficients in the compact formula facilitates optimization
of the scheme in terms of spectral resolution and numerical stability.

In the present work, a sixth-order spectrally optimized central compact scheme for inner points,
combined with a fourth-order central compact scheme for near boundary points and a third-order
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boundary scheme has been used for the computation of the first derivative:

2∑
j=−2

� j f
′
i+ j =

1

h

3∑
j=−3

a j fi+ j , 4�i�N − 3

1

4
f ′i−1 + f ′i +

1

4
f ′i+1 =

1

h

(
−3
4
fi−1 + 3

4
fi+1

)
, i = 2, 3, N − 2, N − 1

f ′i + 3 f ′i−1 =
1

h

(
17

6
fi − 3

2
fi−1 − 3

2
fi−2 + 1

6
fi−3

)
, i = N

f ′i + 3 f ′i+1 =
1

h

(
−17

6
fi + 3

2
fi+1 + 3

2
fi+2 − 1

6
fi+3

)
, i = 1

(7)

with a±3= ± 0.00559, a±2= ± 0.25154, a±1= ± 0.6494, a0= 0, �±1= 0.57967, �±2= 0.0895,
�0= 1.

For the computation of the second derivative, a fourth-order optimized compact scheme along
with a third-order boundary schemes have been used:

2∑
j=−2

� j f
′′
i+ j =

1

h2

3∑
j=−3

b j fi+ j , 4�i�N − 3

f ′′i +
1

10
( f ′′i−1 + f ′′i+1) =

6

5h2
(− fi−1 − 2 fi + fi+1), i = 2, 3, N − 2, N − 1

f ′′i + 10 f ′′i−1 =
1

h2

(
145

12
fi − 76

3
fi−1 + 29

2
fi−2 − 4

3
fi−3 + 1

12
fi−4

)
, i = N

f ′′i + 10 f ′′i+1 =
1

h2

(
145

12
fi − 76

3
fi+1 + 29

2
fi+2 − 4

3
fi+3 + 1

12
fi+4

)
, i = 1

(8)

with b±1= 0.21564935, b±2= 1.723322/4, b±3= 0.1765973/9, b0=−2(b1 + b2 + b3), �±1=
0.50209266, �±2= 0.05569169, �0= 1.

Equations (7) and (8) can be written in a matrix form as

Af ′ = Bf and Cf ′′ = Df

where f ′′, f ′ and f are vectors, respectively, containing the first, second derivative and the function
values along a line in a certain direction. These equations are inverted to obtain the first and second
derivatives along a line in the computational plane during the solution

f ′ = (A−1B)f�⇒ f ′ = Ef and f ′′ = (C−1D)f�⇒ f ′′ = Ff (9)

where E(≡ A−1B) and F(≡C−1D) need to be computed only once (for each direction), during
the preprocessing stage, for use in all subsequent computations. For the mixed derivatives, such
as ���, arising in the diffusion term in Equations (1) and (2), successive operation by the first
derivative operators of the respective directions are applied. This is written symbolically as

f��= (f�)�= (E�f)�= E�(E�f) (10)

where E� and E� are the matrix E of Equation (9) in the � and � directions, respectively.
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3.2. Time integration scheme

An implicit technique has been used in the present study to time march the vorticity equation
(Equation (1)) which is discretized with the two-point backward Euler scheme as follows:

J
�n+1 − �n

�t
+Un+1E�X

n+1 + V n+1E�X
n+1= 1

Re
∇2�n+1 (11)

where the discretized form of the Laplacian is

∇2�= 1

J 2
[�F�X+ �F�X+ �F�(F�X)] + PE�X+ QE�X (12)

and P and Q are same as in Equation (4). If Equation (11) is linearized by using the most-recent
values of the contravariant velocities within a time step it becomes

J
�n+1,l+1 − �n

�t
+Un+1,l E�X

n+1,l+1 + V n+1,l E�X
n+1,l+1= 1

Re
∇2�n+1,l+1 (13)

where l is the index for the inner-loop iteration within a time step. Equation (13), written for all
the points in the computational domain, can be cast into the matrix form

A�(Un+1,l , V n+1,l , g,Re)�n+1,l+1= b� (14)

where g denotes the dependence of matrix A� on the metric coefficients and the Jacobian of the
transformation. The Poisson equation for the stream function is discretized by the use of operator
F of Equation (9) and the mixed derivative operator of Equation (10) to obtain a system of linear
equations

A�(g)�n+1,l+1= b�(�n+1,l+1) (15)

The velocity components are obtained as follows:

u= 1

J
[−x�E�w

n+1,l+1 + x�E�w
n+1,l+1] and v= 1

J
[−y�E�w

n+1,l+1 + y�E�w
n+1,l+1] (16)

while the contravariant velocities are calculated using their definition

Un+1,l+1= y�u − x�v and V n+1,l+1=−y�u + x�v (17)

3.3. Solution algorithm

The sequential steps that constitute the solution algorithm is written below:

1. Start with initial condition.
2. Solution is started with the values of the previous time step, �n+1,1=�n , �n+1,1=�n ,

un+1,1= un , vn+1,1= vn .
3. Solve for vorticity �n+1,l+1 from Equation (14).
4. Solve for stream function �n+1,l+1 from Equation (15) using �n+1,l+1 of step 3.
5. Compute Cartesian and contravariant velocities using Equations (16) and (17), un+1,l+1 and

Un+1,l+1.
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6. Check for convergence of contravariant velocities. If |Un+1,l+1 − Un+1,l |>	, increase inner
loop counter l← l + 1 and repeat steps 3–4 else go to step 7.

7. March in time with n← n + 1 and go to step 2.

All the systems of linear equations are solved by the stabilized Bi-conjugate gradient (BiCGStab)
technique [21]. For the convergence of contravariant velocities within in a time step, the root-mean-
square errors (Urms, Vrms) are reduced to 10−6 where

Urms=
√∑∑

(Un+1,l+1 −Un+1,l)2

NM
, Vrms=

√∑∑
(V n+1,l+1 − V n+1,l)2

NM

It has been seen that typically three to four inner-loop (l) iterations are required for the convergence
of contravariant velocities within a time step. The convergence criteria for Equations (14) and (15)
are set at 10−8; it was observed that a stringent criteria for Equations (14) and (15) leads to faster
convergence towards the steady-state solution.

4. RESULTS AND DISCUSSION

In this section results are presented for a number of benchmark problems and a model test case to
check the accuracy achieved both for rectangular and curvilinear grids. Although the algorithm is
time accurate, no attempt has been made to compute the unsteady solutions as the present work
mainly focuses on high spatial accuracy.

4.1. Shear driven cavity

The lid-driven cavity problem has been solved for Re= 100, 400, 1000, 3200 and 5000 and
compared with the benchmark results of Ghia et al. [22] where a multi-grid based finite-difference
method was used with a finest level of grid of 129× 129 for Re�1000 and 256× 256 for Re= 3200
and 5000. In the present work, the grids used are 21× 21 for Re= 100, 31× 31 for Re= 400,
1000 and 41× 41 for Re= 3200, 5000. While a uniform grid has been used for Re= 100 and
400, a non-uniform grid with grid points more closely clustered near the walls has been used
for Re= 1000, 3200 and 5000. For all the simulations, a time step of �t = 0.01 has been used.
Solutions of lower Re are used as the initial condition for the next higher Re case, thereby reducing
computational time significantly.

Figures 1(a) and (b), showing the vertical mid-plane u velocity and the horizontal mid-plane v

velocity profiles for Re= 100, 400 and 1000, depict an excellent match with the benchmark results
even for coarser grids. At high Re it is known that due to the increased relative importance of the
non-linear convective term, a range of spatial scales appear in the flow and flow variables admit
sharp variation. Thus high accuracy and the superior spectral resolution of the compact schemes
are expected to be demonstrated at this range of Re. This can be judged by using a smaller number
of grid points than were used in the benchmark solutions. Figures 2(a) and (b) show the results for
Re= 3200 and 5000. In these cases also, a close match is obtained between the present scheme (on
a 41× 41 grid) and the benchmark results (on a 256× 256 grid). The streamline pattern, shown
in Figures 3(a) and (b), clearly resolves three corner vortices at Re= 3200 and 5000. Moreover,
at Re= 5000, all the three corner vortices spread and grow stronger which is also found in the
benchmark results.
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Figure 1. (a) u velocity on the vertical mid-plane; and (b) v velocity on
the horizontal mid-plane for Re�1000.
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Figure 2. (a) u velocity on the vertical mid-plane; and (b) v velocity on the
horizontal mid-plane for Re= 3200 and 5000.

A lower order method comprising the standard second-order explicit differencing for all the
spatial derivatives retaining the solution algorithm is used to compare the relative CPU time with
the present method. As fewer grid points is required to reach the benchmark solution with the
present higher order method it takes much lower CPU time (Table I) compared to the lower order
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Figure 3. Streamline patters for: (a) Re= 3200; and (b) Re= 5000.

Table I. Comparison of CPU time taken by the present
method and a second-order method.

Present Second-order
Re method (s) method (s)

100 59 84
400 479 2105

1000 3974 37 618
3200 19 022 57 238

Table II. Perceived order for the driven cavity problem.

Re u-order v-order �-order �-order

1000 3.731 3.526 3.851 3.477
3200 3.458 3.21 3.641 3.296

method in which a large number of grid points are required to achieve the same. For the second
order method, 41× 41 grid points are required at Re = 100, 101× 101 for Re= 400 and 129× 129
for Re= 1000 and 3200 compared to the coarser grids required for the compact schemes (see
previous paragraph). The order of accuracy test, described in Section 4.4, has been conducted for
the driven cavity problem in the range 100�Re�3200. Table II reports the perceived order of
accuracy for various solution variables. It is observed that with increase in Re accuracy decreases
for all the flow variables. As vorticity takes boundary conditions derived from the flow solutions
its accuracy is lowest, while the stream function admitting prescribed boundary conditions have
the largest accuracy.
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Figure 4. Geometric features of the inclined cavity with boundary conditions.

4.2. Inclined driven cavity

This problem, a variant in non-orthogonal geometry (see Figure 4) of the classical lid-driven cavity
problem has been solved for two different inclination of the vertical walls, namely �= 45◦ and
30◦ at Re= 100 and 1000 and compared with Demirdzic et al. [23] who used a multi-grid based
finite volume method with 320× 320 at the finest grid level. In the present work an uniform grid
of 51× 51 with �t = 0.01 has been used.

Figures 5(a) and (b) show the u- and v-velocity profile at vertically inclined mid-plane (plane
B–B of Figure 4) and horizontal mid-plane (plane A–A of Figure 4). A close match is obtained
with Demirdzic et al. [23] using fewer grid points compared to the reported benchmark results.
Streamlines for �= 45◦ (Figure 6) shows that at small Re the main vortex fills almost the whole
cavity with a small secondary vortex confined deep in the corner region. With increased Re, the
main vortex formed due to the lid velocity weakens and the corner vortex grows into the body of
the cavity and is accompanied by the appearance of a third vortex near the bottom corner. Figure 7
shows the flow pattern for �= 30◦, a case with extremely non-orthogonal geometry. The flow
pattern is similar to the previous case with slightly weaker primary and secondary vortices, due to
the reduction in mass flow rate accompanying the smaller volume of the cavity. These observations
are in good agreement with Demirdzic et al. [23]. Table III gives the quantitative comparison of
the strength and the location of the vortex centre with Demirdzic et al. [23]. It is clear that the
location and the strength of the vortices are well resolved in the present study, despite the much
coarser grid used, which again confirms the high accuracy and superior resolution capability of
compact schemes.

4.3. Viscous flow in a triangular cavity

Flow in a triangular cavity, whose geometric features and boundary conditions along with a typical
grid are shown in Figures 8(a) and (b), is solved for Re�1500. In the present case the cavity being
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Figure 5. (a) u velocity on the vertically inclined mid-plane; and (b) v velocity on the horizontal mid-plane.
Present computations done at 51× 51 while 320× 320 CVs were used by Demirdzic et al. [23].

(a) (b)

Figure 6. Streamline pattern for �= 45◦: (a) Re= 100; and (b) Re= 1000.

(a) (b)

Figure 7. Streamline pattern for �= 30◦: (a) Re= 100; and (b) Re= 1000.

an equilateral cavity, A=√3, s= 2 and H = 3. The Reynolds number is based on the characteristic
length H/3 and reference velocity U , the velocity of the lid, which is consistent with previous
works [24–26]. It should be noted that if a side of the cavity is used as the length scale, the actual
Re would be increased 2

√
3-fold. For all Re, a 40× 40 grid has been used here while finer grids

of 80× 80 and 200× 200 were used in References [24, 25], respectively.
Tables IV and V show the detailed characteristics of the primary and secondary eddies,

respectively. It can be seen that present results are in good agreement with the earlier studies.
The streamline pattern at different Re are shown in Figure 9. A primary and a bottom vortex
exist at all Reynolds numbers. However, as Re is increased beyond 500 a upper corner vortex also
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Table III. Minimum and Maximum stream function values in vortex centres and their position, as predicted
by the present work (51× 51) and Demirdzic et al. [23] (320× 320).

Re Source �min, location �max, location

�= 45◦
100 Present −7.031× 10−2, (1.111, 0.551) 3.657× 10−5, (0.341, 0.141)
100 Demirdzic et al. [23] −7.023× 10−2, (1.110, 0.546) 3.683× 10−5, (0.339, 0.143)

1000 Present −5.385× 10−2, (1.319, 0.579) 1.013× 10−2, (0.790, 0.410)
1000 Demirdzic et al. [23] −5.351× 10−2, (1.313, 0.574) 1.004× 10−2, (0.777, 0.398)

�= 30◦
100 Present −5.315× 10−2, (1.178, 0.380) 5.619× 10−5, (0.524, 0.141)
100 Demirdzic et al. [23] −5.313× 10−2, (1.166, 0.379) 5.606× 10−5, (0.527, 0.143)

1000 Present −3.902× 10−2, (1.450, 0.410) 4.281× 10−3, (0.910, 0.260)
1000 Demirdzic et al. [23] −3.856× 10−2, (1.458, 0.411) 4.149× 10−3, (0.904, 0.255)

ψ = 0, u , v = 0 ψ = 0
u , v = 0

ψ = 0, u = 1, v = 0 

y

x

(0 , H) (sA, H)

(A, 0)
(a)

x
0 1 2 3

0

1

2

3

y

(b)

Figure 8. Equilateral triangular cavity: (a) geometric features; and (b) numerical grid.

appears and grows with Re. This is also evident from the absolute values of the stream function
given in Table V for the upper corner vortex. According to the mean square law, the theoretical
value of vorticity at the primary vortex centre is 1.054 for equilateral cavity with side 2

√
3. This

interior constant vorticity prediction is given by Batchelor [27]. Present numerical results suggest
that the stream function value at the centre of the primary eddy, �c, converges to a constant, and
its vorticity, �c is quite close to 1.054 as Re>500.

4.4. Flow through a constricting channel

Viscous flow in a constricting channel has been used to test the order of accuracy of the present
numerical method. A conformal mapping from the physical plane (x, y) to the computational plane
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Table IV. Comparisons of (�c,�c) at the centre of the primary eddy, (xc, yc) between
Li and Tang [24] (80× 80), McQuain et al. [26] and the present method (40× 40).

Re Source �c �c xc yc

Present 0.237 1.478 2.087 2.446
50 McQuain et al. [26] 0.237 1.464 2.078 2.445

Li and Tang [24] 0.235 1.438 2.100 2.438
Present 0.248 1.360 2.043 2.347

100 McQuain et al. [26] 0.247 1.373 2.061 2.355
Li and Tang [24] 0.244 1.264 2.100 2.363

Present 0.260 1.246 1.954 2.269
200 McQuain et al. [26] 0.260 1.272 1.940 2.280

Li and Tang [24] 0.262 1.156 1.905 2.250
Present 0.270 1.160 1.865 2.195

500 McQuain et al. [26] 0.269 1.250 1.905 2.265
Li and Tang [24] 0.278 1.124 1.840 2.213

Present 0.271 1.145 1.865 2.195
600 Li and Tang [24] 0.280 1.110 1.862 2.175

Present 0.267 1.093 1.865 2.195
1000 Li and Tang [24] 0.279 1.048 1.840 2.138

Present 0.262 1.053 1.821 2.159
1200 Li and Tang [24] 0.278 1.024 1.840 2.138

Present 0.256 1.016 1.821 2.159
1500 Li and Tang [24] 0.277 0.998 1.840 2.138

Table V. The feature of the eddies in the triangular cavity at high Reynolds number.

Bottom eddy Upper corner eddy

Re �,�, location �,�, location

600 (a) −0.0116, −0.5851, (1.509, 1.061) −0.0002, −0.151, (0.444, 2.514)
(b) −0.0115, −0.5672, (1.559, 0.975) −0.0002, −0.1451, (0.390, 2.475)

1000 (a) −0.0123, −0.6585, (1.509, 1.061) −0.00331, −0.5371, (0.488, 2.634)
(b) −0.0125, −0.6779, (1.537, 0.938) −0.0024, −0.5608, (0.455, 2.588)

1200 (a) −0.0127, −0.5682, (1.554, 0.996) −0.00411, −0.409, (0.488, 2.635)
(b) −0.0126, −0.6507, (1.559, 0.900) −0.0033, −0.5081, (0.455, 2.588)

1500 (a) −0.01419, −0.5839, (1.554, 0.996) −0.0051, −0.6034, (0.444, 2.706)
(b) −0.0125, −0.7275, (1.537, 0.863) −0.0045, −0.6393, (0.433, 2.625)

(a) Present (40× 40), (b) Li and Tang [24] (80× 80).

(�, �) [28] has been effected to obtain a constricting channel geometry

x = A�+ B

H
[� sinh(2�)− � sinh(2�)], y= A�+ B

H
[� sinh(2�)+ � sinh(2�)] (18)

where H = cosh(2�) + cosh(2�) and A, B are constants. Figure 10(a) shows the flow geometry
along with boundary conditions. The Jacobian of the transformation becomes zero at a point of
co-ordinate singularity, (�0, �0)= (0.562101, 1.049059), leading to the possibility of construction
of a symmetric channel with an arbitrarily sharp corner. The computational domain is given by
the region −∞<�<∞ and −
<�<
, where 
<�0. As the value of 
 approaches �0, the domain
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Re = 50 Re = 100

Re = 200 Re = 500

Re = 600 Re = 1000

Re = 1200 Re = 1500

Figure 9. Development of primary and secondary eddies for 50�Re�1500.

of flow has an increasingly sharp corner. If it is supposed that the diameter of the tube is 2a far
upstream and 2b far downstream; then A and B are given as

A= a + b

2

, B= b − a

2


Two values of 
 has been tested in the present computation with a= 1, b= 0.5. While 
= 0.6
represents a smooth constriction (Figure 10(b)), while 
= 0.8 represents a smooth constriction
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φx = u, v, ψ= 0 , φ
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Figure 10. (a) Flow geometry with boundary conditions; close view of the
grid near the constriction for; (b) 
= 0.6; and (c) 
= 0.8.

but with an intrusive bulge at the mouth of the inner channel (see Figure 10(c)). The numerical
solution has been obtained for three levels of grids namely, a coarse grid of 32× 8, a medium
grid of 64× 16 and a fine grid of 128× 32 in � and � directions respectively. The range of � is
chosen to be −2<�<3, with the critical point �0 being approximately at the midpoint. This leads
to x approximately in the range 2a/
<x<3b/
 using Equation (18).

If �C, �M and �F are the numerical solutions at a common location in the coarse, middle and
the fine grids, respectively, and if � is the exact solution at that point then the perceived order of
accuracy �, can be written as

�− �F= Kh�, �− �M= K (2h)�, �− �C= K (4h)�

where K is a constant and h is the grid spacing at the finest level. Eliminating � and K gives

�M − �C

�F − �M
≈ 2�

from which � can be found. In the present computation, the root mean square error has been used
between two successive grid levels to evaluate �. This is given as√∑∑

(�M − �C)2√∑∑
(�F − �M)2

≈ 2��⇒ RM

RF
= 2��⇒ �= log(RM/RF)

log 2

where summation implies over all points with same location for the three different grids. Three
different Reynolds numbers namely, Re= 50, 100 and 250 have been used for both 
= 0.6 and
0.8. In Table VI, the computed order of accuracy for all variables are shown. In all the cases the
order of accuracy is greater than 3, and close to 4. As Reynolds number increases, however, the
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Table VI. Perceived order for 
= 0.6 and 0.8.


 Re u-order v-order �-order �-order

50 4.021 4.587 4.889 3.742
0.6 100 3.981 3.847 4.455 3.704

250 3.645 3.513 3.821 3.41

50 4.351 4.274 4.876 3.85
0.8 100 3.787 3.521 4.13 3.421

250 3.534 3.258 3.658 3.121

order of accuracy for all the variables deteriorates. For 
= 0.8, the order of accuracy deteriorates
somewhat more but remains above 3. For all cases, � gives the highest numerical order of accuracy
while � gives the lowest. This is presumably because solutions of higher order quantities (e.g.
vorticity depends on the spatial derivatives of velocity, which in turn depend on derivatives of
stream function) tend to have more numerical error.

5. CONCLUSIONS

A high-order accurate method using the �–� formulation is developed for two-dimensional
incompressible steady viscous flows. Implicit time integration facilitates reaching steady state
with less computations. The use of higher order optimized compact schemes provide excellent
accuracy and resolution with fewer grid points than that of benchmark results. Tests on highly
non-uniform and curvilinear grids show that the spatial order of accuracy of the numerical solutions
remains above 3 in all cases, and approaches 4 for low Reynolds numbers.

REFERENCES

1. Lotstedt P, Nilsson J, Bruger A, Gustafsson B. High order accurate solution of the incompressible Navier–Stokes
equations. Journal of Computational Physics 2005; 203:49–71.

2. Bhaganagar K, Rempfer D, LumleLele D. Direct numerical simulation of spatial transition to turbulence using
fourth-order vertical velocity second-order vertical vorticity formulation. Journal of Computational Physics 2002;
180:200–228.

3. Henshaw WD. A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping
grids. Journal of Computational Physics 1994; 113:13–25.

4. Li M, Tang T, Fornberg B. A compact fourth-order finite difference scheme for the steady incompressible
Navier–Stokes equations. International Journal for Numerical Methods in Fluids 1995; 20:1137–1151.

5. Morinishi Y, Lund TS, Vasilyev OV, Moin P. Fully conservative higher order finite difference schemes for
incompressible flow. Journal of Computational Physics 1998; 143:90–124.

6. Nagarajan S, Lele SK, Ferziger JH. A robust high-order compact method for large eddy simulation. Journal of
Computational Physics 2003; 191:392–419.

7. Strikwerda JC. High-order-accurate schemes for incompressible viscous flow. International Journal for Numerical
Methods in Fluids 1997; 24:715–734.

8. Tam CKW, Webb JC. Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal
of Computational Physics 1993; 107:262–281.

9. Zingg DW, Lomax H, Jurgens H. High accuracy finite difference schemes for linear wave propagation. SIAM
Journal on Scientific and Statistical Computations 1996; 17:328–346.

10. Li Y. Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport.
Journal of Computational Physics 1997; 133:235–255.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1613–1628
DOI: 10.1002/fld



1628 A. K. DE AND V. ESWARAN

11. Kawamura T, Takami H, Kuwahara K. New higher order upwind scheme for incompressible Navier–Stokes
equations. Fluid Dynamic Research 1985; 1:145–162.

12. Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics
1992; 103:16–42.

13. Hixon R, Turkel E. Compact implicit Maccormack-type schemes with high accuracy. Journal of Computational
Physics 2000; 158:51–70.

14. Zhong X. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition.
Journal of Computational Physics 1998; 144:662–709.

15. Chu PC, Fan C. A three-point sixth-order non-uniform combined compact difference scheme. Journal of
Computational Physics 1999; 148:663–674.

16. De AK, Eswaran V. Analysis of a new high resolution upwind compact scheme. Journal of Computational
Physics 2006, in press.

17. Sotiropoulos F, Abdallah S. The discrete continuity equation in primitive variable solutions of incompressible
flow. Journal of Computational Physics 1991; 95:212–227.

18. Petersson NA. Stability of pressure boundary conditions for Stokes and Navier–Stokes equations. Journal of
Computational Physics 2001; 172:40–70.

19. Wu XH, Wu JZ, Wu JM. Effective vorticity–velocity formulations for three-dimensional incompressible viscous
flows. Journal of Computational Physics 1995; 122:68–82.

20. Quartapelle L, Napolitano M, Pascazio G. A review of vorticity conditions in the numerical solution of the �–�
equations. Computers and Fluids 1999; 28:139–185.

21. van der Vorst HA. A fast and smoothly convergence variant of bi-cg for the solution of nonsymmetric linear
systems. SIAM Journal on Scientific and Statistical Computations 1992; 13:631–644.

22. Shin CT, Ghia U, Ghia KN. Higher-order-accurate schemes for viscous flows. Journal of Computational Physics
1982; 48:387–411.

23. Demirdzic I, Peric M, Lilek Z. Fluid flow and heat transfer test problems for non-orthogonal grids: Benchmark
solutions. International Journal for Numerical Methods in Fluids 1992; 15:329–354.

24. Li M, Tang T. Steady viscous flow in a triangular cavity by efficient numerical techniques. Computers and
Mathematics with Applications 1996; 31:55–65.

25. Wang CY, Ribbens CJ, Watson LT. Steady viscous flow in a triangular cavity. Journal of Computational Physics
1994; 112:173–181.

26. McQuain WD, Ribbens CJ, Wang CY, Watson LT. Steady viscous flow in a trapezoidal cavity. Computers and
Fluids 1994; 23:613–626.

27. Batchelor GK. On steady laminar flow with closed streamlines at large Reynolds number. Journal of Fluid
Mechanics 1956; 1:177–190.

28. Hunt R, Mancera PF, De A. Fourth-order method for solving the Navier–Stokes equations in a constricting
channel. International Journal for Numerical Methods in Fluids 1997; 25:1119–1135.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1613–1628
DOI: 10.1002/fld


